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Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum
information protocols. However, a high degree of precision in the characterization of the noisy experimental
apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical
scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adap-
tive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given
a target output state, performs an online estimation of the quality of the currently produced states, relying on
output measurement statistics, and determines how to tune the experimental parameters to optimize the state
generation. To achieve this, the algorithm does not need to be imbued with a description of the generation
apparatus itself. Rather, it operates in a fully black-box scenario, making the scheme applicable in a wide
variety of circumstances. The handles controlled by the algorithm are the rotation angles of a series of wave-
plates and can be used to probabilistically generate arbitrary four-dimensional OAM states. We showcase our
scheme on different target states both in classical and quantum regimes and prove its robustness to external
perturbations on the control parameters. This approach represents a powerful tool for automated optimizations
of noisy experimental tasks for quantum information protocols and technologies.
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1 Introduction
Quantum-state engineering of high-dimensional states is a pivotal
task in quantum information science.1–4 However, many existing
protocols are platform-dependent and lack universality.5–10

Conversely, a scheme to engineer arbitrary quantum states,
relying on quantum walk (QW) dynamics, was showcased in
Ref. 11. QWs are a particularly simple class of quantum dynam-
ics that can be considered to generalize classical random walks.12

QWs have been implemented in experimental platforms ranging
from trapped ions13,14 and atoms15 to photonics circuits.16–23

In particular, engineering of arbitrary qudit states has been ex-
perimentally demonstrated with QWs in orbital angular momen-
tum (OAM) and polarization degrees of freedom of light.11,24,25

In the paraxial approximation, the angular momentum of
light can be decomposed in spin angular momentum, also re-
ferred to as polarization in this context, and OAM, which is re-
lated to the spatial transverse structure of the electromagnetic
field.26–28 In the classical regime, OAM finds application in par-
ticle trapping,29 microscopy,30,31 metrology,32 imaging,33–35 and
communication.36–40 On the other hand, in the quantum regime,
OAM provides a high-dimensional degree of freedom, useful,
for example, to encode large amounts of information in single-
photon states. Applications include quantum communication,41–45

computing,3,4,46 simulation,47,48 and cryptography.49,50
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Optimization algorithms have been proven to be useful
tools in tasks such as detection of qudit states51 and quantum
state engineering.52,53 Machine learning and genetic algorithms
have also found many uses in photonics,54,55 including the
use of generative models,56 quantum state reconstruction,57,58

automated design of experimental platforms,59–61 quantum-
state and gate engineering,52,53,62–65 and the study of Bell
nonlocality.66–68 Moreover, genetic algorithms have been em-
ployed to design adaptive spatial mode sorters using random
scattering processes.69 Between these types of algorithms,
those based on a black box approach have the advantage that
they do not rely on specific knowledge of the underlying
experimental apparatus. These algorithms are built to tune a
set of control parameters based on the information acquired
from their environment, without having a notion of what
the parameters represent in the experimental platform. This
makes such approaches flexible and easier to apply in several
scenarios.

In this paper, we showcase the use of RBFOpt,70,71 a gradient-
free global optimization algorithm based on radial basis func-
tions (RBFs),72–74 to learn how to engineer specific quantum
states by efficiently tuning the parameters of a given experimen-
tal apparatus. The algorithm seeks to optimize cost function
CðΘÞ, with Θ a set of real parameters determining the state
produced by the apparatus. With cost function CðΘÞ, we use
the quantum state fidelity between the target and current states,
as estimated from a given finite number of measurement sam-
ples. This makes the cost function inherently stochastic and thus
its optimization potentially more complex. As shown in Refs. 70
and 71, RBFOpt is particularly suited to optimize problems with
few parameters, with a focus on operating regimes where only
a small number of function evaluations are allowed. This is fully
appropriate for our scenario, where functions evaluations in-
volve the generation and measurement of photonic states and
are thus relatively costly.

We apply the proposed protocol to an experimental apparatus
implementing discrete-time one-dimensional QWs in the OAM
and polarization degrees of freedom of light, using a platform
based on polarization-controlling waveplates and q-plates
(QPs):75 devices able to couple polarization and OAM degrees
of freedom. This platform was shown to be able to engineer
arbitrary target quantum states.11,24 Such an approach, however,
requires full knowledge of the inner workings of the underlying
experimental apparatus. This feature makes it harder to flexibly
adapt a protocol to the perturbations arising in realistic noisy
conditions. On the other hand, an adaptive algorithm operating
in a black-box scenario, capable of finding the ideal control
parameters independently of the physical substratum it operates
in, is intrinsically more resilient to varying environmental and
experimental circumstances. To ensure that the performance
of our protocol is mostly independent of the specific task to
which we apply it here, we avoided fine-tuning of the associated
hyperparameters, using the default values presented in Refs. 76
and 77. To further verify the resilience of the learning process,
we also performed numerical simulations introducing some
noise.

In Sec. 2, we introduce the general optimization framework
and the QW model underlying our experimental architecture
and showcase the performance of the RBFOpt algorithm in
numerical simulations with noise that mimics the experimental
conditions. In Sec. 3, we describe the experimental platform
and report how our optimization pipeline fares when operating

directly on the experimental data. In Sec. 4, we analyze the per-
formance of the protocol when applied to recover the optimal
control parameters following sudden changes due to possible
external perturbations in order to probe its flexibility under
different scenarios. Finally, in Sec. 5, we summarize the results
and relate our conclusions.

2 Quantum-State Engineering Process as
a Black-Box and Simulated Optimization

In order to study the effects of noise on the RBFOpt algorithm
and its feasibility to engineer target quantum states, we apply it
to numerically simulated data, reproducing the most likely
sources of noise in our experimental apparatus. We study, in
particular, the effects of binomial and Poissonian fluctuations
on the cost function used by the algorithm.

Generating arbitrary qudit states is a pivotal and ubiquitous
task in quantum information science and quantum technologies,
with applications ranging from quantum communications1,78–82

to quantum computation.3,4,46,83 The general quantum state engi-
neering scenario we consider can be modeled with a parameter-
ized unitary operation UðΘÞ for some set of real parameters
Θ ∈ RN . Given a pair of initial and target states jϕini and
jϕtargeti, the state engineering task consists of finding values
Θ⋆ ∈ RN such that UðΘ⋆Þjϕini ¼ jϕtargeti.

To achieve this, we employ a numerical optimization algo-
rithm to minimize the cost function CðΘÞ ≡ 1 − FðΘÞ, where
FðΘÞ ≡ jhϕtargetjUðΘÞjϕinij2 is the fidelity between current
and target states. The optimization is performed in a fully
black-box scenario, meaning we want the optimization pro-
cedure to be independent of the specifics of the particular
optimization task. In particular, the optimization algorithm can
control and optimize only the generation parameters Θ, even if
it has no knowledge about both generation of the output state
UðΘÞjϕini and computation of the cost function CðΘÞ. More
specifically, we use RBFOpt,70,71 which works by building an
approximated model of the objective function—referred to as
a surrogate model in this context—using a set of RBFs.
RBFs are real-valued functions ϕp that depend only on the dis-
tance from some fixed point: ϕpðxÞ ¼ ϕðkx − pkÞ for some ϕ.
The goal of the surrogate model used in RBFOpt is to optimally
exploit the information collected on the objective function from
a limited number of function evaluations. Based on the current
estimation of the surrogate model, the algorithm selects new
values of the control parameters to improve its current estima-
tion of the model (see Appendix A for further details). This
algorithm is an extension of RBF algorithms72–74,84,85 whose
performances are enhanced by providing an improved pro-
cedure to find an optimal surrogate model. A comparison of its
performances with basic gradient-free algorithms is proposed in
Appendix C.

In our case, UðΘÞ is the evolution corresponding to a one-
dimensional discrete-time QW with time-dependent coin oper-
ations. In this model, one considers states in a bipartite space
HW ⊗ HC, where HW is a high-dimensional Hilbert space en-
coding the possible states of the walker degree of freedom, and
HC is a two-dimensional space accommodating the coin degree
of freedom. The dynamics are defined as a sequence of itera-
tions, where each iteration is composed of a coin operation ĈðθÞ
followed by a controlled-shift operation Ŝ. To simulate the
experimental conditions, the operators are defined as
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ĈðθÞ ¼
�

e−iβ cos η ðcos μþ i sin μÞ sin η

ð− cos μþ i sin μÞ sin η eiβ cos η

�
;

Ŝ ¼
X
k

jk − 1ihkjw ⊗ j↓ih↑jc þ jkþ 1ihkjw ⊗ j↑ih↓jc; (1)

where β ≡ θ1 − θ3, η ≡ θ1 − 2θ2 þ θ3, μ ≡ θ1 þ θ3, and θ ≡ ðθ1;
θ2; θ3Þ are the control parameters tuned by the algorithm. This
parameterization arises from the sequence of three polarization
waveplates used to implement each coin operation. The case in
which there are only two waveplates, as in the first step (Fig. 1),
is simply obtained from having θ1 ¼ 0 and optimizing the

values of θ2 and θ3. Denoting with θðiÞ ≡ ðθðiÞ1 ; θðiÞ2 ; θðiÞ3 Þ the free
parameters characterizing the coin operation at the i’th step, the
full set of parameters characterizing an n-step QW dynamics is
then Θ ¼ ðθð1Þ;…; θðnÞÞ ∈ R3n. The overall evolution operator
corresponding to n steps is then UðΘÞ ≡Q

n
i¼1 Ŝ ĈðθðiÞÞ.

Following the engineering protocol presented in Refs. 11 and 24,
we project the coin degree of freedom at the end of the evolution
so that our target state is jϕtargeti ∈ HW .

We apply RBFOpt to optimize a three-step QW, where in
the first iteration only two free parameters are used. This

corresponds to a total of eight control parameters: Θ ¼ ðθðiÞÞ3i¼1

with θð1Þ ≡ ð0; θð1Þ2 ; θð1Þ3 Þ. Importantly, the algorithm does not
use the information of the correct model UðΘÞ of the evolution.
This feature permits us to use the present approach in conditions
where a model of the experimental setup and noise processes is
lacking.

In order to simulate the experimental calculation of the
fidelity of a given target state, an orthonormal basis fjψ jigdj¼1

,
where d is the dimension of the target state and jψ1i ¼ jϕtargeti,
is built through the Gram–Schmidt algorithm. This approach to
estimate the cost function is used to simulate the experimental
statistics collection process. Furthermore, we consider both
Poissonian [PðλÞ] and binomial [BðN; pÞ] fluctuations.
Poissonian fluctuations are introduced to take into account laser
oscillations, whereas binomial fluctuations reflect the probabi-
listic nature of the measurement setup.

The number of events of the binomial distribution N is ex-
tracted from a Poissonian distribution with a parameter λ ¼ 104,
while the probability p is equal to the fidelity between the state
proposed by the algorithm in the k’th iteration and the specific
element of the basis. Therefore, for each element of the ortho-
normal basis, the number of detected events is extracted from

(a) (b)

Fig. 1 Experimental apparatus. (a) The engineering protocol has been tested experimentally in
a three-step discrete-time QW encoded in the OAM of light with both single-photon inputs and
classical continuous wave laser light (CNI laser PSU-III-FDA) with a wavelength of 808 nm.
The single-photon states are generated through a type-II spontaneous parametric down-
conversion process in a periodically poled KTP crystal. The input state is characterized by a
horizontal polarization and OAM eigenvalue m ¼ 0. Each step of the QW is made by a coin
operator, implemented through a set of waveplates (QWP–HWP–QWP), and the shift operator,
realized by a QP. To obtain the desired state in the OAM space, a suitable projection in the
polarization space is performed through a quarter-waveplate, a half-waveplate, and a polarizing
beam-splitter. The measurement station of the OAM-state is composed by an SLM followed by a
single-mode fiber, and the coupled signal is measured through a power meter, in the classical
regime, or an avalanche-photodiode detector, in the quantum one. In particular, in quantum opti-
mizations, pairs of photons are generated, and heralded detection is performed, computing the
two-fold coincidences between the detectors clicks from the QW evolved photon and the trigger
one. The RBFOpt ignores the features of the experimental implementation that is seen as a black
box. The algorithm has access only to the Θ parameters of the coin operators and to the computed
fidelity. (b) During the iterations of the algorithm, the RBFOpt samples the black-box function to
construct a surrogate model that is employed in the optimization. In the k ’th iteration, the algorithm
receives as input the fidelity computed in the previous iteration and uses it to improve the surrogate
modeling. Moreover, the new parameters Θk are computed based on the optimization process.
This procedure is repeated for each iteration of the algorithm.
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the binomial distribution. The noisy fidelity between the pro-
posed state and the target state is then calculated as the ratio
between the counts for the element jψ1i and the total number
of counts.

We apply the optimization protocol to 10 random four-
dimensional target states, repeating the optimization 10 times
for each state. In Fig. 2, we show the value of the cost func-
tion—i.e., the infidelity between current and target states—
obtained at different stages of the algorithm, up to the fixed
maximum number of 1000 iterations. For each iteration number,
we report the infidelity obtained as the mean over the average
behavior of each of the 10 states. The obtained trend demon-
strates that, also in noisy conditions, the algorithm manages
to minimize the function, and promising results are obtained.
Moreover, we also investigate the scalability of the proposed
approach when the number of parameters increases. In particu-
lar, we simulated QWs of up to 17 steps (50 parameters) and
observed in the investigated regime a linear increase in the mean
number of iterations needed to achieve a fidelity value of at least
98%. Further details are reported in Appendix B.

3 Experimental Dynamical Learning
The capability of manipulating the OAM of light enabled effec-
tive experimental implementations of high-dimensional discrete-
time QWs. Therefore, to test experimentally the optimization
procedure, we exploit a setup based on the scheme proposed in
Ref. 11. In particular, we implemented three steps of a discrete-
time QW encoding the coin state in the photon polarization and
the walker in the OAM degree of freedom. At each iteration, the
coin operation is implemented as a set of polarization wave-
plates, while the controlled-shift occurs via a QP, a device that
acts on the OAM conditionally on the polarization state of
light:75

Q̂ ¼
X
m

jm − 1ihmj ⊗ jLihRj þ jmþ 1ihmj ⊗ jRihLj; (2)

where m is the OAM value, and R and L are the right and left
circular polarizations, respectively. We implement arbitrary coin
operations using two quarter-waveplates (QWPs) interspaced

with a half-waveplate (HWP). The output OAM state is then
obtained performing a suitable projection on the polarization.
This is implemented with a set of waveplates followed by a
polarizing beam-splitter [cf., Fig. 1(a)].

To measure the fidelity of the output states, we use a mea-
surement apparatus composed of a spatial light modulator
(SLM)86,87 and a single-mode fiber. Since the SLM modulates
the beam shape through computer-generated holograms, the op-
eration of this measurement station is equivalent to a projective
measurement on the state encoded in the employed hologram.
To characterize an incident beam, we thus display on the SLM
the hologram corresponding to each element of an orthonormal
basis, obtaining the corresponding fidelities. The optimization
speed is mainly limited by the measurement process, since sig-
nificant statistics have to be collected for each projected holo-
gram. Therefore, the use of algorithms able to limit the objective
function evaluations, such as those based on the building of a
surrogate model, is preferable.

The computed fidelities are then fed to the RBFOpt algo-
rithm to tune the waveplate parameters Θ. To achieve this, the
algorithm does not require knowledge on the final target state
or on the generation and measurement functioning, as shown in
Fig. 1(b). However, since the algorithm has no control over
the measurement station, the parameters of the latter have been
fine-tuned a priori, and we are confident of the correctness of
this step. Therefore, through a dynamic control of the wave-
plates’ orientation, the algorithm is able to optimize the fidelity
value in real time.

To showcase the efficiency of the protocol on our experimen-
tal platform, we applied it to engineer different kinds of target
states in both the classical and quantum regimes. In Fig. 3,
we show the results of running the optimization algorithm
on nine different classical states. In particular, we focus our
analysis on the elements of the computational basis jmi with
m ∈ f−1,1;−3,3g and on the balanced superposition of two
OAM values. We considered both real SR

m2
m1

¼ jm1i−jm2iffiffi
2

p and

complex superpositions SC
m2
m1

¼ jm1i−ijm2iffiffi
2

p , where m1; m2 ∈
f−1,1;−3,3g with jm1j ¼ jm2j. Moreover, to verify the effi-
ciency of the protocol, we optimize the engineering of a
randomly extracted state (R) in the four-dimensional Hilbert
space with no zero coefficients corresponding to each basis
element. As shown in Fig. 3(a), optimal average values are
obtained in 600 algorithm iterations. In particular, the reported
infidelity 1 − F is computed, averaging over all the experimen-
tally engineered states, and the minimization is compatible with
the numerical results reported in Fig. 2. In Fig. 3(b), we report,
for each engineered state, the ratio between the fidelities found
by the RBFOpt algorithm and those found using the method
presented in Ref. 24 to find the optimal values of the parameters.
Indeed, as demonstrated in Ref. 24, it is possible to find coin
parameters resulting in an arbitrary target state—albeit possibly
with different projection probabilities—regardless of the exper-
imental conditions. We find the fidelities reached by RBFOpt
to always be higher than the ones computed using the direct
method presented in Ref. 24. This is due to the dynamical learn-
ing algorithm we employ, which shows higher performances
in compensating experimental imperfections. This showcases
the advantages of real-time optimization algorithms for quantum
state engineering in realistic scenarios. Notably, we extended the
experimental demonstration of the protocol, also in the quantum
regime of single photon states. We showcased the engineering of

Fig. 2 Simulated optimization: infidelity 1 − F obtained at differ-
ent stages of the optimization. We test the algorithm on 10 ran-
dom target states, repeating the optimization 10 times for each.
The reported results are obtained as the mean over the average
behavior for each of the 10 states. The highest average fidelity
obtained is 0.994� 0.002. The shaded area represents the stan-
dard deviation of the mean.
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the superposition state SR−1
1 , and we repeated the optimization

5 times, considering only 100 iterations. No differences are ex-
pected between the employment of the laser and single-photon
states. In Fig. 3(c), we compared the two performances and ob-
served a good agreement between the approaches. In particular,
we reported the optimization curves obtained in the quantum
regime plotting the raw data, corresponding to ∼4000 Hz coin-
cidences, and by subtracting the accidental counts. This allows
us to distinguish the contribution to the cost function given by
either the engineering or the measurement system. The corre-
sponding maximum mean fidelities are F ¼ 0.972� 0.003
and F ¼ 0.989� 0.003, respectively. In conclusion, since very
high fidelities are reached in only 100 steps, the proposed ap-
proach can be efficiently applied to quantum situations.

4 Dynamical Learning Protocol
with External Perturbations

In realistic conditions, noise is unavoidable, which makes the
capability of an algorithm to adapt to real-world perturbations
pivotal. To test the robustness of RBFOpt, we have thus added
external perturbations to the experimental setup. In particular,
we consider a scenario where a sudden perturbation on the
parameters is introduced. The algorithm is then tasked with find-
ing again the optimal parameters required to engineer the target
state. We assess the performances of the algorithm throughout
the optimization, to determine whether a perturbation occurred,
and thus the control parameters need to be reoptimized. More
specifically:

1. Every 10 iterations, we used the optimal parameters
found by the algorithm up to that time Θbest to obtain a new
estimate of the cost function CnewðΘbestÞ.

2. To spot if a perturbation occurred, we compared the new
value with the one obtained during the algorithm evolution
CsampledðΘbestÞ. So choosing a threshold t, we proceed as follows.

(a) If CnewðΘbestÞ ≤ CsampledðΘbestÞ þ t, the optimization is
continued.

(b) If CnewðΘbestÞ > CsampledðΘbestÞ þ t, the algorithm is
restarted.

Therefore, within this approach, the surrogate model is dis-
carded and rebuilt from scratch every time the quantity of inter-
est deteriorates. We performed this check every 10 algorithm
iterations in order to have a quick response to perturbations
without excessively increasing the optimization time. Indeed,
each function evaluation consists of a time-consuming projec-
tive measurement with the SLM. For each engineered state, the
value of the threshold was fixed by analyzing the fluctuations
in the value of the measured fidelity F, and these values are re-
ported in Table 1.

The considered perturbations act on the HWP of the second
step and on the first QWP of the third step. This disturbance
consists of a permanent offset in the waveplates rotation of a
quantity δ. In particular, at each iteration and with probability q,
the orientation of the waveplates optical axis is changed by
the addition of an angle sampled from a normal distribution
with mean μ ¼ −30 deg and standard deviation σ ¼ 5 deg
[N ð−30 deg; 5 degÞ]. We investigated the algorithm response
using elements of the computational basis, balanced super-
positions of such elements, and a random state. In these cases,
several values for the parameter q are used. The engineered
states and the probability q used for them are reported in Table 1.

An example of the dynamics under perturbations is reported
in Fig. 4(a); here, the iteration in which a disturbance is intro-
duced is highlighted by a vertical red or green line, respectively,

(a) (c)

(b)

Fig. 3 Experimental results: (a) minimization of the quantity 1 − F averaged over the algorithm
performances for different experimental states. The mean maximum value reached is 0.983�
0.004. (b) Ratio between the maximum experimental values of the fidelities resulted after the opti-
mization F ðΘoptÞ and the fidelities measured with the theoretical parameters F ðΘThÞ. For each
engineered state, the ratio is higher or compatible with the value 1 highlighted by the dashed line.
This confirms that the adopted algorithm can reach performances compatible or even superior with
respect to the one obtained with the direct method presented in Ref. 24 that considers ideal ex-
perimental platforms. In this sense, the algorithm can take into account and compensate for the
experimental imperfections. All of the error bars reported are due to laser fluctuations affecting
each measurement and are estimated through a Monte Carlo approach. (c) Comparison between
the performances reached in 100 iterations using classical or single-photon input states. In yellow
is reported the area between the best and worst optimization performed in the classical case. The
blue and violet curves are associated with the minimization of the quantity 1 − F averaged over
five different optimizations for the state SR−1

1 engineered in the quantum domain. In particular, the
raw data are shown in violet, whereas the data after accidental counts subtraction are in blue.
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for a shift on the HWP or on the QWP. Instead, the restart of
the algorithm is indicated with a vertical orange line. As shown,
after the perturbation, the minimum found by the algorithm is
no longer the optimal solution, thus triggering a restart. The
latter allows the algorithm to reach a new optimal solution in
a different environmental condition. Moreover, in Fig. 4(b),
the mean ratio between the best fidelity found before and after
perturbation is reported for each analyzed state. Knowing that
for each state more than one perturbation could be performed,
the mean ratio is computed, averaging over all of them. Here,
values close to or greater than 1 point out how, thanks to the
restart, the algorithm is able to readapt its optimal solution and
eventually improve the previously obtained fidelity.

5 Conclusions
The black-box optimization paradigm we discussed is highly
flexible, thus promising to be a powerful tool with the potential
to be applicable to problems ranging from optimizations of
quantum information platforms to the study of nonclassicality.

We have showcased how the RBFOpt global optimization
algorithm allows us to dynamically learn the quantum state gen-
eration process. In particular, such an approach enables the op-
timization of target states engineering without having to devise
ad hoc platform-dependent protocols. First of all, we dynami-
cally tune the QW parameters in order to optimize the engineer-
ing of nine different experimental states in the classical domain.
The obtained results turned out to be comparable to the prelimi-
nary ones achieved in our numerical simulations. Moreover, the
RBFOpt results in higher fidelities than those computed using
the direct method of Ref. 24. Therefore, the real-time optimiza-
tion allows us to take into account and compensate for exper-
imental imperfections. Moreover, we optimized an experimental
state using a single-photon source as input to prove the equiv-
alence between the performances reached in the classical and
quantum regimes and extend the proposed approach. In order
to carry out a complete analysis, and as the adaptation capability
of an algorithm is pivotal in realistic conditions, we simulated
the effect of real-world perturbations. We have thus applied the
optimization algorithm to different states while adding perma-
nent offsets to the orientation of twowaveplates in a probabilistic
manner. The algorithm manages to adapt itself so as to reach
fidelities comparable to those obtained before the perturbation.
Our results prove the advantages of adopting real-time optimi-
zation algorithms for experimental quantum state engineering
protocols. Therefore, practical experimental quantum informa-
tion experiments can benefit from our work, increasing the en-
gineering performances and employing a real-time fine-tuning of
the parameters. The proposed approach can be extended to
many different tasks; for example, by suitably modifying the
cost function, it is possible to optimize not only the fidelity
but also the success probability to generate a target state after
the coin projection (see Refs. 11 and 24). Moreover, since the
algorithm does not require information on the function to be
optimized and on the employed experimental platform, our
scheme can find applications in different engineering protocols
and quantum information tasks that make use of controllable
devices parameters employing, in principle, arbitrary degrees

(a) (b)

Fig. 4 Experimental perturbation results. (a) Optimization under external perturbation of the quan-
tity 1 − F for the state j1i. The iterations in which a perturbation δ occurs are highlighted by a
vertical red line (second step HWP) or by a vertical green line (third step QWP), and a vertical
orange line highlights the iteration in which the algorithm is restarted. (b) Mean ratio between
the best value obtained for the fidelity after (Fa

best) and before (Fb
best) the perturbation for the differ-

ent engineered states. The ratio is close to or higher than 1 for all of them, which showcases that
the algorithm is able to reobtain and eventually improve the best value sampled before the per-
turbation. All of the error bars reported are due to laser fluctuations affecting each measurement
and are estimated through a Monte Carlo approach.

Table 1 The parameters used in the study of the optimization
under perturbations for the engineered states. In the second
column, we report the values of the perturbation occurrence
probability q, whereas in the third column, we report the threshold
values t used for deciding the algorithm restart.

Target state
Perturbation
probability

Restart
threshold

j1i 0.0015 0.02

j3i 0.0015 0.02
1ffiffi
2

p ðj − 1i þ j1iÞ 0.008 0.02
1ffiffi
2

p ðj − 1i þ i j1iÞ 0.004 0.02
1ffiffi
2

p ðj − 3i þ j3iÞ 0.0015 0.05

Random 0.0015 0.02
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of freedom. Furthermore, going beyond the fully black-box
paradigm, in principle, the approach can be exploited also
for different protocols. For instance in the theoretical design of
experiments, it could be used to optimize the number of quan-
tum gates needed for a specific desired task. Moreover, it could
also be used in the calibration of complex optical circuits that
find applications in tasks like boson sampling88–91 and in the en-
gineering of multiphoton quantum states.92 In this case, it would
be crucial to tailor a suitable cost function.

6 Appendix A: Description of the RBFOpt
Algorithm

The RBFOpt optimization algorithm is based on the exploitation
of a radial basis interpolant, called a surrogate model.70,71,84,85

Given k distinct parameter points Θ1;…;Θk ∈ Ω, where Ω is
a compact subset of RN , with corresponding cost function val-
ues CðΘ1Þ;…; CðΘkÞ, the associated surrogate model skðΘÞ is
defined as

skðΘÞ ¼
Xk
i¼1

λiϕðkΘ − ΘikÞ þ pðΘÞ; (3)

where ϕð·Þ is an RBF, λ1;…; λk ∈ R, and pð·Þ is a polynomial of
degree d. This degree is selected based on the type of the RBF
function used in the surrogate model. The possible RBF func-
tion choices and the degree of their associated polynomial are
reported in Table 2. The hyperparameter γ present in the expres-
sion of the RBFs is set to 0.1 by default.76,77 Moreover, the
RBFOpt algorithm automatically selects the RBF that appears
to be the most accurate in the description of the problem. This
selection is made using a cross-validation procedure, in which
the performance of a surrogate model constructed with points
ðΘi; CðΘiÞÞ for i ¼ 1;…; k is tested at ðΘj; CðΘjÞÞ with
j ≠ i.70,71

The value of the parameters λi with i ¼ 1;…; k and the
coefficients of the polynomial can be determined solving the
following linear system:70,71,84,85

�
skðΘiÞ ¼ CðΘiÞ; i ¼ 1;…; kP
k
i¼1 λip̂jðΘiÞ ¼ 0; j ¼ 1;…; d̃

; (4)

where Πd is the space of polynomials of degree less than or
equal to d, ~d is the dimension of Πd, and p̂1;…; p̂ ~d are a basis
of the space.

At the beginning of the optimization procedure, the surrogate
model is constructed from a set of parameter points tunable in
number and sampled using a Latin hypercube design.76,77 After
that, the interpolant is used to choose the next point, in which
the cost function is computed. So, the evolution of the RBFOpt
algorithm is composed by the repetition of following steps
(say k’th step).

1. Compute the surrogate model skðΘÞ from the data points
ðΘi; CðΘiÞÞ, with i ¼ 1;…; k, solving the linear system of
Eq. (4).

2. Use the surrogate model to choose the next point Θkþ1.
In particular, the metric stochastic response surface method is
applied.70,71,85 Within this framework, the algorithm does a
number of global steps controlled by the hyperparameter num_
global_searches (default value 576,77) and a local step. The latter
gives as the next point the one that minimizes the surrogate
model.

3. Evaluate the cost function at Θkþ1 and add
ðΘkþ1; CðΘkþ1ÞÞ to the data points.

4. Decide whether to restart the model for lack of improve-
ment. Specifically, if the algorithm does not find a new optimal
solution after a number of evaluations defined by the hyperpara-
meter max_stalled_iterations (default value 10076,77), the actual
surrogate model is discarded, and the optimization procedure is
restarted from scratch.

Moreover, during the optimization, the algorithm executes a
refinement step, the purpose of which is to improve the optimal
solution doing a local search around it through variation of a
trust region method.70,71 The refinement step is triggered at the
end of point (3) with a frequency controlled by the hyperpara-
meter refinement frequency, with default value equal to 3.76,77

Furthermore, in the study concerning the evolution under
external perturbation, we add, as explained in Sec. 4, a new con-
dition for triggering a restart. Beyond the default one, we ana-
lyzed the deterioration of the optimal value founded for the cost
function and decided whether to restart the optimization. This
further check was done every 10 iterations in order to have a
faster response to perturbations without increasing excessively
the number of function evaluations that experimentally are ex-
pensive in time.

7 Appendix B: Scalability of the
Optimization Approach

In this section, we study the RBFOpt behavior as the number of
parameters of the objective function increases. In particular, we
simulated different experimental configurations with QW steps
ranging from 3 to 17 and thus considered up to 50 parameters.
In fact, with Nsteps as the number of steps and considering only
two waveplates in the first coin, the number of parameters Npar

follows the relation:

Npar ¼ 3Nsteps − 1: (5)

For each case, we generated at random 50 target states and
investigated the optimization procedure stopping the process
when a fidelity of at least 98% was reached. In all of the evo-
lutions, we added the same Poissonian and binomial noises de-
scribed in the main text to the fidelity between the target state
and the one proposed by the algorithm.

Table 2 The RBFs exploited by the RBF algorithm and the de-
gree of the polynomial used in the construction of the surrogate
model.70,71,84,85 When d ¼ −1, the polynomial is removed from
Eq. (3).

RBF ϕðxÞ Polynomial degree d

x 0

x3 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ γ2

p
0

x2 log x 1

e−γx2
−1

Suprano et al.: Dynamical learning of a photonics quantum-state engineering process

Advanced Photonics 066002-7 Nov∕Dec 2021 • Vol. 3(6)



The computational cost of performing a black-box optimiza-
tion in high-dimensional spaces can be extracted analyzing how
the mean number of iterations changes in relation to the number
of parameters. The values obtained averaging over the 50 states
considered in our study are reported in Fig. 5 for each simulated
configuration. As can be seen from the plot, the RBFOpt
algorithm appears to have linear scaling over the parameters
number when applied to our implementation. This theoretically
showcases the effectiveness of the proposed approach for the
engineering of higher dimensional OAM states, and similar
behaviors are expected experimentally taking into account the
devices response time and adapting properly the related imple-
mentation. Finally, while similar behaviors are expected in the
regime of a few parameters for higher orders of magnitude, the
time needed to perform an iteration step increases drastically.
In such regimes, a more refined version of the algorithm might
be useful to improve its efficiency.

8 Appendix C: Comparison Between
RBFOpt and Basic Algorithms

In this section, we perform simulations to compare the RBFOpt
algorithm with two basic gradient-free methods suitable to
multi-parameter black-box optimization. In particular, we con-
sider both nonadaptive and adaptive approaches.

Regarding the first class, among the simplest is the random
search method. As suggested by the name, in each iteration of
the optimization processes, the parameters are randomly ex-
tracted with a uniform distribution in the parameter space and
independently from values assumed in previous steps. The sec-
ond comparative algorithm is based upon the simplest gradient-
free adaptive method known as the Powell method.93 It attempts
to find the local minimum nearest to the starting point. Initially,
a set of directions is defined, and the algorithm moves along one
of them until a minimum is reached. This minimum becomes
the uploaded starting point for the following minimization per-
formed on the second direction. After repeating this procedure

for each direction, a new direction is defined, and the algorithm
proceeds to upload the set of directions.

Figure 6, shows the reported trends corresponding to each
compared algorithm obtained from averaging the optimizations
of 10 distinct states, each of which is repeated 10 times. The
experimental conditions are simulated adding both Poissonian
(λ ¼ 104) and binomial fluctuations. As expected, both of the
adaptive approaches results are advantageous with respect to the
random approach for a considerable number of function evalu-
ations. Moreover, since the RBFOpt spans the whole parameter
space through the global steps, its performances are substan-
tially better.
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